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Abstract

A theoretical and numerical analysis shows that by performing continuous-flow electrophoresis in a chamber with a
thickness of about 0.2 mm, most of the effects that cause spreading of protein filaments can be suppressed and the convective
spreading is replaced by less extensive Taylor dispersion. An expression is derived that gives the resolution of the system as
a function of the various design parameters. The optimum values for these parameters have been identified. Proteins with a
mobility differing by only 10% can be completely separated and the sample treatment rate is of the order of 1 ml/h.
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1. Introduction

The need for a new high-performance preparative
technique in the separation of biological molecules,
such as proteins, is becoming more and more appar-
ent. This is demonstrated by the increasingly com-
mon presentation of gel and capillary electrophoresis
as “‘micro-preparative’ processes. Though a number
of preparative techniques based on electrophoresis
already exist [1-5], continuous-flow electrophoresis
offers several advantages that are not always found
in other processes: separation based on mobility
differences, continuous rather than batch operation,
little contact with solid surfaces (so little denaturing).
These qualities and some applications of the process
have been explained in detail in two recent reviews
[6,7]. However continuous-flow electrophoresis
(CFE) is also plagued by the presence of a number
of secondary phenomena that interfere with sepa-
ration and reduce resolution [8]: non-uniform resi-
dence times, electro-osmosis, electrohydrodynamics

and electrokinetic spreading. The general tendency in
solving these problems has been to use thicker
chambers and well centred injection to reduce wall
effects, i.e., the “‘crescent” effect due to non-uniform
residence times and electro-osmosis. However this
amplifies the disturbances caused by natural convec-
tion due to mass transfer at the electrodes and non-
uniform Joule heating [9]. Though the latter problem
is of little importance for an electrophoresis chamber
operated in microgravity, the electrohydrodynamic
spreading is still present [10] and microgravity is
hardly a solution for everyday separations.

On the other hand, a solution to these problems
may lie in the use of a very thin chamber. Taylor
[11] has developed a formula giving the axial
dispersion by convection and diffusion of a narrow
band of solute flowing through a fine tube. This
expression can be adapted to the geometry of a CFE
chamber. It is then found that for sufficiently thin
chambers, the convective-diffusive spreading (that
corresponds to the “‘crescent’ effect) can be kept to
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quite low levels. In such a geometry, other secondary
effects that degrade separation in CFE, elec-
trohydrodynamics and natural convection, are elimi-
nated. Only the electrokinetic spreading — due to
non-uniform pH and field strength — remains and this
can be minimised by using more concentrated buf-
fers than are acceptable with thick chambers: in such
a thin chamber the removal of heat generated by the
Joule effect is relatively easy.

2. Theory

The principle of CFE is represented in Fig. 1. A
carrier buffer solution is made to flow at a low
velocity through a thin rectangular chamber. Elec-
trode compartments on either side of the chamber are
used to apply an electric field across its width. The
solution containing the protein mixture to be sepa-
rated is injected into this flow at the entrance of the
chamber. The bio-molecules are carried along the
chamber by the flow and migrate under the influence
of the electric field. As each protein species has a
characteristic mobility at the pH fixed by the buffer,
the single original filament divides into separate
filaments: one for each species. At the outlet of the
chamber, the various filaments can be collected
separately.
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Fig. 1. Continuous-flow electrophoresis: principle of the process,
showing the deformation of a protein filament by the effect of
convection and migration (‘‘crescent” effect).

To describe this system, we shall limit our treat-
ment to a relatively simple model similar to that of
Grateful and Lightfoot [12]. It takes into account the
transfer by molecular diffusion, the uniform and
independent migration of each species, the imposed
laminar (Poiseuille) convection of the carrier solution
and its electro-osmotic convection. Dispersion by the
‘“crescent” effect is thus taken into account: this
term covers two contributions. In the first of them,
the parabolic profile of flow through the chamber
implies that molecules near the centre plane of the
chamber spend less time in the electric field than
those nearer the walls: so the molecules closer to the
wall migrate further. The second contribution, elec-
tro-osmosis, arises from the fact that the chamber
walls carry fixed electrical charges that are neutral-
ised by mobile ionic charges of the buffer. Under the
influence of the electric field, the ions in this double
layer migrate in the direction of the field and drag
water along with them, thus creating a slip velocity
at the wall. As the sides of the chamber are closed
off by the electrode compartments, the overall result
is the formation of a flow pattern in the buffer with a
parabolic profile across the chamber thickness and a
non-zero velocity at the wall. It has been known for
some time that these two phenomena produce a
geometrically equivalent distortion of the sample
filament and that they can cancel each other out
when the electro-osmotic velocity at the wall is equal
and opposite to the protein migration velocity [13].
The overall spreading, known as ‘“‘crescent” disper-
sion, will be particularly important in the following
discussion. However we shall neglect effects such as
electrohydrodynamics and natural convection, that
should be negligible in thin chamber geometries.
Also, to simplify the discussion, the non-uniformities
of field strength and pH and the associated interac-
tions between the migrating species will not be
considered.

Under conditions where the above assumptions
apply, the system arrives rapidly at a steady state that
can be represented by the following diffusion-con-
vection equation, giving the concentration ¢ of the
species considered:

Uox t ey = o e (1)

where the x-axis is in the direction of carrier flow, y
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in the field direction and z perpendicular to the
chamber walls. It should be noted that the diffusive
transport in the x direction has been supposed
negligible. Here D is the diffusion coefficient and the
velocity components v, and v, include the migration
velocity together with the strictly convective veloci-
ties:

3 Z\2
oo=viz[1-(2)] @)
where v, is the mean carrier velocity and Z is the
chamber half-thickness.

L) 1]

where v, is the migration velocity and v, the
electro-osmotic slip velocity at the wall. The bound-
ary conditions for Eq. (1) are: (a) dc/az=0 for
2=0,£Z; (b) c=0 fory==*oc; (c)at x=0: ¢ =
¢, for —g/2=y=+¢g/2 and ¢c=0 for y<
—&f2 and y> +£/2; (d) c >0 for x »» where ¢
is the width of the initial band of concentration c,. It
should be noted that the injection zone is extended
across the whole chamber thickness: this is not the
usual practice with thick chambers but this dis-
tribution has been adopted here in all cases to
facilitate comparison between the different geomet-
ries. The analysis will in any case insist mainly on
thin chamber geometries.
It is useful to define a new set of axes:

v
oS
v, =0, + 2

x,=x1Z y, =(y+tax))Z z,=212 (4)

where the constant a has yet to be defined.
In terms of these axes Eq. (1) takes on the
following form:

Zv, d¢ Zav,+v) 3¢  d’c 3¢
Do D oy, ey ot ©)
The velocity v, is then defined as:
v, =av, Tu,
1 3 2
=v.+5@av, —v,) - Slav, = v,z (6)

From Eq. (6), the value for a can be chosen in
various ways, but to follow the treatment by Taylor
the mean velocity in the y, direction must be zero:

Jv,dz,=ve+avo=0 (7
0
So a =—v,/v, and the velocity v, is given by:
1
v, =5, +0,)3z — 1) (®)

The band distortion created by this velocity dis-
tribution will give rise to a molecular diffusion flux
in the z direction that will tend to recreate a uniform
concentration distribution in this direction: this is
illustrated in Fig. 2. This mechanism will be par-
ticularly effective for thin chambers for which Z <<
g In this case, we can assume that azc/ayf <<
azc/azf. Furthermore, we shall consider the transfer
through a plane given by a constant value for y,: on
such a plane the concentration gradient in the flow
direction dc/dx, is small and Eq. (5) becomes:

D, e _ e

D 3y, az; ®

There is a solution to this equation in the follow-

ing form:
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Fig. 2. The mechanism of Taylor dispersion in CFE can be
thought of as occurring in two steps. First the filament cross-
section is deformed by the ‘‘crescent” effect. Then diffusion
eliminates concentration gradients in the z direction and there is
an overall broadening of the filament. In fact both processes occur
simultaneously.
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1
c=c,+ (2 -52!) (10)

where ¢, (x,, y,) is the concentration in the central
plane of the chamber, where z, =0. Substituting Eq.
(10) in Eq. (9), it is found that:

Ao Zv, +v,,) dc;
- D oy, (D

The mean flux of solute through any y, plane at
the height x, is
1
J"f o 2 2w, +u,.) ac,
=JUedn = T5 T b 5y, (12)

0

By analogy with Fick’s law of diffusion, the factor
that multiplies the concentration gradient can be
considered as a diffusion coefficient. This coefficient
for convective dispersion in the Taylor regime can be
defined as:

2 Z,+u,)’
Diy=—mc———F— — (13)

105 D

It is interesting to note that this dispersion coeffi-
cient increases strongly with Z (i.e., with chamber
thickness), while paradoxically it decreases with
increasing D.

To characterise the quality of separation in an
electrophoresis process, the concepts of theoretical
plate height, number of theoretical plates and res-
olution are often used [14]. The theoretical plate
height H is defined as the ratio of the variance o of
an approximately Gaussian peak to the migration
distance. For a Gaussian peak undergoing diffusion
the variance is proportional to the diffusion coeffi-
cient and to the time, the appropriate time here being
the mean residence time in the chamber (r=X/v,):

o’ =2D*r=2D*X/v, (14)

where X is the chamber length. Here the diffusivity
D* is a generalised diffusion coefficient that can
cover phenomena such as molecular diffusion or
Taylor dispersion.

As the migration distance y, is given by the
product of the migration velocity and the residence
time (7v,), the height of a theoretical plate is given
by:

o’ 2D*
H:—=
Ve v

(15)
The number of theoretical plates N is the ratio of
migration distance to plate height:

2
_ Ve _ e

~H 2D*

N (16)

The resolution of two peaks is given by the
distance between their centres 7Av, divided by 40,
where o is the standard deviation of both peaks,
assumed to be equal:

Av,  Au
40  4u

(17)

where Au is the difference in electrophoretic mobili-
ty between the two species and u is the mean
mobility. The condition for complete separation of
the two peaks can be taken as R=1. To reach this
condition, the following condition applies:

Au 40
= — =

4
u VN T

(18)

The left-hand side of this inequality can be
considered as representing the requirement imposed
by the user (a certain fractional difference in mobili-
ty between two species that must be separated),
whereas the right-hand side represents the limit
imposed by the response of the apparatus or the
technique used.

In a chamber where the peak broadening is
dominated by Taylor dispersion, the diffusivity D*
in Eq. (15) should be replaced by D, and Eq. (18)
becomes:

ﬂ = __8_._ 1+ Yos -U_O 19
5—105( ve) DX (19

It is worth noting that this expression contains the
following dimensionless group, which is the ratio of

the chamber half-thickness to the characteristic diffu-
sion length VDr:

Yo __Z 20
This quantity is often used to characterise flow

with mass transfer [15]: a flow for which T<1 is
said to be in the Taylor regime. In this case the

T=
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residence time in the channel can be considered
sufficiently long for solute to have been able to
diffuse from the centre-line to the wall.

If the dispersion is limited to molecular diffusion
Eq. (18) becomes:

Au_ 4,/2Dv,
—=—\—

u v X 2

e

Here a different dimensionless group appears that
is the ratio of the characteristic diffusion length to
the migration distance:

1,/2Dv, ~2Dr
G=—\——= (22)
v,V X v.T

In the case where several different dispersion
mechanisms are active, it is common to consider that
the overall variance is the sum of the variances due
to each mechanism [16]. So, if both Taylor disper-
sion and molecular diffusion are important, we have:

0’ =2D1+ 2D, 7+ A8 (23)

where the last term takes into account the initial
width & of the solute zone and A, is a constant that
depends on the shape of the initial concentration
distribution.

When this more general formula for ¢ is substi-
tuted into Eq. (18), the following expression is
obtained:

Au ) sy A
TZ AG +A,(M+r )T +— 24)
n

where r, =v_ /v, is the ratio of the electro-osmotic
to the electrophoretic velocities and the coefficients
A, A, and A, replace the various numerical con-
stants that have been encountered. The quantity » is
the number of initial zone widths through which the
solute has migrated at the chamber outlet:

vX v,
n: —_—

Vo € (25)

3. Numerical simulation

To test the hypotheses that have been made up to
this point, a numerical solution to Eqs. (1-3) has
been studied. The axes of Eq. (4) were used to put

the equations into the form of Eqs. (5,8) and the
resulting expression was discretised using a par-
ticular finite-difference technique. The diffusion term
was represented in a semi-implicit manner while the
convection term was represented by a fourth-order
explicit technique to keep numerical diffusion at an
acceptable level.

To present the results of these calculations, they
are expressed in a dimensionless form: this reduces
(somewhat) the number of parameters and allows the
results to be more easily generalised. The result of
interest is the width of the solute band at the
chamber outlet. The seven parameters that control
this result are: X, v,, v,,, Uy, & D and Z. As these
involve only two basic quantities, length and time,
the seven dimensioned parameters will be replaced
by five dimensionless ones. A dimensional analysis
shows that the system is satisfactorily defined by the
dimensionless parameters introduced above: T, G, n
and r., together with the aspect ratio X/Z. The
calculations were all performed with a diffusion
coefficient D of 6Xx10 "' m?/s: this is a typical
value for a protein.

The first result illustrates the transition from the
regime of convective spreading to that of Taylor
dispersion. Fig. 3 shows the concentration distribu-
tion at the chamber outlet obtained for three similar
parameter sets: only the chamber half-thickness Z is
varied. It can be seen that for the thickest chamber
(2Z=3 mm, T=3.87), the form of the peak is not at
all symmetrical: the band has an advancing edge that
would contaminate any more mobile proteins. The
maximum of the peak has migrated only through
12.9 mm (while n=15): this is due to the fact that
part of the protein has only experienced the residence
time (27/3) in the centre plane of the chamber where
the laminar flow profile has its maximum. The
second profile is for a somewhat thinner chamber
(2Z=1.6 mm, T=2.07): here the edge of the protein
band is less widely spread but a tendency appears for
the formation of a double peak, corresponding to two
different residence times. As a result, the maximum
concentration is relatively low in this case. The third
profile is for a quite thin chamber (2Z=0.2 mm,
T=0.26) and in this case the mass transfer is within
the Taylor regime. The peak has now become
Gaussian in shape and the maximum is found at 15
mm, in agreement with the value for n. The peak
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Fig. 3. Calculated concentration distribution at the chamber outlet for different values of the chamber thickness. (a) 2Z=3 mm, 7=3.87; (b)
2Z=1.6 mm, T=2.07; (c) 2Z=0.2 mm, T=0.26. Other parameters are: X =500 mm; v,=0.2 mm/s; v, =6 wm/s; v,,=—3 pm/s; e=1

mm; D=6%X10""" m*/s.

shows little spreading and as a result, the maximum
in concentration is much higher.

Next, the simulation was performed for different
values of the input parameters. The following values
were kept constant: X =500 mm, Z=0.1 mm, £=1
mm and D=6X10""" m?/s. The value of X was
chosen simply to have a chamber of a reasonable
length: in fact the performance of the chamber
increases monotonically with X and the limit on this

parameter will be purely technological. The value of
Z was chosen sufficiently small so as to remain
always within the Taylor regime. The initial zone
width & was also fixed at a small, but technologically
realistic, value. The other parameters v,, v, and v,
were varied so as to cover a range of values of T and
n, while keeping r, at a typical value of —0.5. This
corresponds to varying the field strength and the
carrier flow-rate, while operating with a given
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chamber geometry and a given solute. The quality of
the separation can in fact be judged from the
behaviour of a single solute, as can be seen from Eq.
(18): this assumes that the two solutes being sepa-
rated are similar in properties (# and D) and in initial
concentration (c,).

The results of these calculations are shown in Fig.
4, The curves show how the limiting value of Au/u
varies with » for four values of T. It can be seen that
the quality of separation improves as the migration
distance n increases: for low n, the value of Au/u
decreases rapidly showing that smaller and smaller
differences in mobility can be resolved, then beyond
a certain value for #, little improvement is seen. The
asymptotic value of Au/u, attained at high values of
n, decreases with 7; at the same time, for lower
values of 7 a higher value of n is required to
approach this asymptotic value of Au/u.

This behaviour is in agreement with Eq. (24). The
contribution from G is relatively small and for a
given value of T there is a hyperbolic decrease in
Au/u with n. The asymptotic limit for high values of
n is fixed by 7T (or by G at very low values of 7).

As has been pointed out by many previous authors
the ideal value for r,, is —1.0: this corresponds to
the case where the protein to be separated has the
same zeta potential as the chamber wall and there is
no crescent spreading [13]. This is illustrated by Fig.
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5 which shows the limiting value of Au/u as a
function of r_, for different values of 7. As the ideal
situation is approached (r,, = — 1) the value of Au/u
can reach very low levels. Eq. (24) shows that this
level is fixed by n and by G.

From these numerical results, a linear regression
analysis was used to calculate the constants in Eq.
(24). After substitution of these numerically de-
termined constants, Eq. (24) becomes:

A 2.54
T" z\/22.8(;2 +0.889(1 +r, )T +—5  (26)
n

4. Discussion

It remains to be considered whether this system is
a feasible one and whether it offers a sufficient rate
of production. The latter quantity can be represented
by the flow-rate for sample injection, g:

q=22v,¢e 27)

The system can be optimised by simple inspection
of Eq. (26) and the derivatives of its right-hand side
with respect to different parameters; this makes it
possible, for a given value of g, to determine
optimum values of these parameters that minimise
the limiting value of Au/u. The following extra
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Fig. 4. Limiting value of relative resolution Au/k as a function of the dimensionless migration distance n, for various values of the parameter

T.
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Fig. 5. Limiting value of relative resolution Au/u as a function of the ratio r__ of electroosmotic velocity to migration velocity, for various

values of the parameter 7.

constraints were imposed: r, = —0.5, X=<600 mm,
7<5400 s (90 min), 22=0.2 mm, y, =300 mm.
The temperature is assumed to be kept constant by a
satisfactory cooling system. The constraints on X, Z
and y, are meant to represent technological con-
straints on chamber dimensions; the values adopted
are thought to be realistic, but no serious technologi-
cal analysis has been performed. A constraint on the
residence time (90 min) was adopted even though
this process is intended for continuous rather than
batchwise operation. This represents the fact that
most users would wish to have a fairly short waiting
time before the first separated material is recovered:
this is to ensure a sufficiently flexible process. In any
case, very much longer residence times could en-
counter problems with pump technology.

The parameters optimised were those on which
constraints have been applied. For X and y, the
derivative of the right-hand side of Eq. (26) is
always negative so these parameters should be
chosen at their maximum values. A relative optimum
does exist for Z, but it does not correspond to the
optimum for the system and the chamber thickness
should really always be minimised. Within the limits
imposed, the only useful optimum is that for the
residence time. The expression for this optimum
value is the following:

24.(1 + , ZZ4X2 2 1/3
T:[ 2( rm) ye (28)

A,q’D

It is worth noting that for this value of 7, the
second and third terms within the square root of Eq.
(26) are equal in value. This means that at this
optimum, the spreading due to Taylor dispersion is
equivalent to the spreading due to the initial zone
width. Table 1 shows values of the optimum 7 and
the corresponding values of Au/u and ¢ for various
values of the injection rate g. As for the other
parameters involved in these calculations, X and y,
were fixed at their maximum values and Z at its

Table 1

Optimum residence time (7) for CFE in Taylor regime with
corresponding limiting resolution (Au/u) and initial zone width (&)
for various injection rates (g)

q T Aufu £
{ml/h) (min) (%) (mm)
0.5 131 8.5 9.1
1.0 83 10.7 11.5
1.5 63 12.2 13.2
2.0 52 134 14.5
2.5 45 14.4 15.6
3.0 40 153 16.6

Values for other parameters: 2Z=0.2 mm, X =600 mm, y, =300
mm, r,.=—0.5.
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minimum. It can be seen that for the higher injection
rates, the optimum residence time is smaller than the
maximum value imposed and it gets shorter as the
injection rate is increased.

This process of CFE in the Taylor regime is only
interesting when Au/u is not much greater than 10%
(corresponding to 1600 theoretical plates). Under the
conditions assumed here, this means a maximum
injection rate of about 1.0 ml/h, though the value of
Aulu only increases slowly with the injection rate.
This production rate may seem small but it should be
remembered that higher sample concentrations could
be used in such thin chambers without creating
problems of filament stability or electrohydro-
dynamics and it might be worth considering whether
a stack of such chambers could be operated in
parallel to increase throughput. It should also be
noted that as the initial zone is fairly wide (~10
mm), the fraction collector need not be very refined.

It is possible to make some remarks about how
sensitive the performance is to the various con-
straints that have been imposed. The value of r_, is
fairly arbitrary and it has already been noted how
greatly the performance could be improved if the
zeta potential of the chamber walls could be adjusted
to suit the molecules being separated. The rate of
production at a given resolution is proportional to the
product Xy, ie., chamber length multiplied by
width, at least in the range of values close to those
chosen here. So the exact ratio of width to length is
of little importance. For a given residence time, a
wider chamber means a proportionally higher field
strength if the migration distance is kept proportional
to the width; so the applied voltage will increase as
the square of the chamber width, but the energy
dissipated by Joule heating will remain the same.

There are already CFE chambers commercially
available that come close to fulfilling the conditions
presented here. These are the Octopus PZE chambers
manufactured by Dr. Weber GmbH (Ismaning, Ger-
many). Their chamber gap is 500 mm long, 100 mm
wide and 0.5 mm thick [17,18]; they allow a
maximum residence time of about 25 min. These
quantities give a value of T of about 0.83 for a
typical protein. So these chambers can be operated
just within the Taylor regime. However this value for
T is still quite high and a rapid estimation with Eq.
(26), putting r . at —0.5 to simplify comparison

with the earlier calculations, shows that the best
resolution that can be achieved under these con-
ditions is a Au/u of about 35%. Of course a better
separation can be achieved with r . closer to the
ideal value of —1.0, but the same can be said of all
chamber geometries. The thickness of these cham-
bers was essentially chosen to limit instabilities in
buffer flow due to natural convection [6] and it is
these instabilities that limit the residence time. An
even thinner chamber would reduce Taylor disper-
sion (T is reduced) and further stabilise the buffer
flow thus allowing longer residence times.

5. Conclusion

Continuous-flow electrophoresis in the Taylor
regime offers a new possibility for the use of CFE in
protein separation. By using a very thin chamber,
spreading due to convective effects (‘“‘crescent”
effect) is replaced by the less harmful Taylor disper-
sion; other phenomena that reduce resolution such as
electrohydrodynamics and natural convection are
virtually suppressed. Though the production rate is
not very high, the resolution can be very good. It
remains to be seen whether technological constraints
will allow chambers with this geometry to be built.

6. Symbols

A, constant

c concentration

c, initial sample concentration

D coefficient for molecular diffusion
D* generalised diffusivity

D, coefficient for Taylor dispersion

G V2D/tlv,

H height of a theoretical plate

n v.le

N number of theoretical plates

q sample injection rate

rOS vOS/UC

R resolution of two solute distributions
T ZINDr

u electrophoretic mobility

v, electrophoretic migration velocity
U, electro-osmotic velocity at the wall
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Uy, Uy components of flow velocity

Uy mean carrier velocity

X, 2 space co-ordinates

X1, ¥1,2, dimensionless co-ordinates

X chamber length

Ve migration distance

z chamber half-thickness

& initial zone width

o standard deviation of solute distribution
T mean residence time (X/v,)
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